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SUMMARY

The present investigation concerned noise produced by turbulent flow
adjacent to a flexible wall. Measurements of the spectrum and intensity
of the pressure field outside thin-walled Mylar cylinders containing tur-
bulent pipe flow have been made. The resulting spectra could be inter-
preted in relation to the elastic properties of the cylinders and the
character of the turbulent fluctuations inside the flow. The eigen fre-
quencies of the cylinders could be identified and similarity parameters
for the spectra were established. The effect of cylinder wall thickness
on the spectrum and intensity of the pressure fluctuatiors was investi-
gated. It was found that the intensity of the external pressure field
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scaled with the fifth power of the velocity at the center of the pipe.

For one particular case the spectrum and intensity of the pressure
fluctuations exerted by the turbulent flow on the wall were measured.
The intensity of the pressure fluctuations at the wall scaled with the
fourth power of the velocity as expected. The ratio of the root-mean-
square wall pressure to the dynamic pressure was found to be independent
of Mach number and equal to a constant (0.0078). Similarity laws for
the spectra of the wall-pressure fluctuations were also confirmed.

INTRODUCTION

The sound field inside aircraft in flight can be traced Lo a variety
of sources, one of which is the turbulent airflow over the fuselage skin.
It is a matter of practical experience that the boundary layer contributes
little to the sound field inside the fuselage at speeds up to a few hun-
dred miles per hour. Accordingly, in the past the problem of boundary-
layer-induced cabin noise has not received much attention. However, the
advent of high subsonic and supersonic commercial aircraft has stimulated
interest in the mechanism of noise production by a turbulent boundary
layer.



To develop the general idea underlying boundary-layer noise analy-
sis, it is most convenient to start with the simplest case of air flowing
past a rigid surface. In this case, the turbulent flow is the only
source of sound. The sound is radiated into the free stream. This
mechanism of sound generation has been discussed by Phillips (refs. 1
and 2) and by Curle (ref. 3) from a theoretical point of view; however,
the analysis was handicapped by a lack of experimental information on
the properties of the pressure fluctuations at a rigid wall. The first
experimental data came from Willmarth (refs. 4 and 5), who measured the
spectra and space-time correlation of the pressure fluctuations at a
rigid wall for boundary layers of various thicknesses.l The experiments
were made in a wind tunnel which was specifically designed for this pur-
pose. The pressure fluctuations were measured with sophisticated barium
titanate transducer equipment (ref. 7) over a Mach number range from
0.2 to 0.8. The measurements showed that the correlation function had
a particular shape and that the pressure fluctuations at the wall were
convected at an average speed of 0.82 times the free-stream speed. Also,
Willmarth's results established that the correlation of the pressure
fluctuations was destroyed in a downstream distance equal to approxi-
mately ten times the boundary-layer thickness.

In practice one usually deals with a flexible skin. It then becomes
convenient to restrict the problem to the case of small skin deflections.
In other words, the skin deflections are assumed small enough so that
they will not induce time-dependent pressure gradients of the same order
of magnitude as the forcing function (e.g., as in the case of panel
flutter). Under these conditions, the forcing function on the flexible
skin is essentially the same as if the skin were rigid.

The fluctuating forces on the wall, caused by the turbulent boundary
layer, are the wall static pressure and the shearing stress. However,
it is usually assumed that for thin skins the wall transmits pressure
only by deflecting laterally. Consequently, the effects of shear stress
may be ignored in this case.

The process of transmission of boundary-layer noise through the
thin flexible skin can then be thought of as follows: The random fluc-
tuating wall pressure acts as a driving force on the skin, pushing the
elastic skin in and out. In turn, the motion of the skin acts as a set
of distributed pistons, creating a pressure field in the stationary
medium which constitutes the "cabin."

In order to simplify the analysis one usually assumes that the
motion of the skin is described by a linear equation. Also, it is
assumed that generation of a random pressure field in the stationary

lEinstein and Li, reference 6, previously measured the autocorrela-
tion of wall-pressure fluctuations of oil flow in an open channel flume.
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medium is a linear radiation problem. The mathematical techniques for
solving the problem are similar to those required to calculate the
response of a linear system to a stochastic forcing function of several
variables.

The above approach was taken by Corcos and Liepmann (ref. 8). They
considered the radiation of sound from a large randomly vibrating flat
plate excited by a turbulent boundary layer. The problem has also been
considered by Kraichnan (refs. 9, 10, and 11) and Ribner (ref. 12). Both
authors assumed a given spectral distribution for the pressure fluctua-
tions in the boundary layer. Also, both assumed that the pressure fluc-
tuations were convected. Kraichnan treated the skin as an assembly of
flat square sections which vibrate independently, while Ribner considered
an infinite sheet. Kraichnan and Ribner worked with a spectral function;
Corcos and Liepmann preferred to work with the correlation function.

Unfortunately, the theoretical treatment of all models required many
assumptions because of an almost complete lack of any experimental data
on the transmission of pressure fluctuations across a flexible skin.
Also, at the time the above reports were written no data on the proper-
ties of the wall pressure were available.

It became desirable to obtain experimental information on this
matter. A first step in such a program is the selection of a suitable
skin configuration, and various configurations were considered. It was
decided to work with a thin-walled cylinder rather than with a thin flat
plate. One obvious advantage of a vibrating cylinder is the axial symme-
try of its external pressure field. Furthermore, it was decided to make
the flow inside the cylinder fully developed turbulent pipe flow. Pipe
flow was chosen because of the existence of excellent experimental data
on the structure of turbulence in pipes (ref. 13).

The general aim of the present experimental investigation was to
make an exploratory study of the transmission of pressure fluctuations
through an elastic skin,

The power spectrum of the pressure fluctuations in the stationary
medium outside the vibrating cylinder is a function of the power spectrum
of the wall pressure and the impedance of the thin-walled cylinder. The
power spectrum of the pressure at the wall of a cylinder containing fully
developed pipe flow has never been measured. Also, little is known about
the impedance of thin-walled cylinders of finite length. One could argue
intuitively that, for a certain forcing function, the impedance of a finite
cylinder depends on its length, diameter, thickness, boundary conditioms,
material properties, and damping. It would take many experiments to
investigate the effect of each of these varilables.



The present work was restricted to an investigation of the following
points:

(1) The spectrum and intensity of the pressure fluctuations at the
wall of an elastic cylinder.

(2) The effect of wall thickness on the spectrum and intensity of
the pressure fluctuations at a point outside an elastic cylinder.

(3) The effect of wall thickness and pressure difference across the
wall on the natural frequencies of vibration of a cylinder. The length,
diameter, boundary conditions, and material of the cylinder were not
changed in the experimental program,

The present investigation was conducted at the Guggenheinm
Aeronautical Laboratory of the California Institute of Technology under
the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics as part of a long-range aerodynamic
noise study directed by Dr. H. W. Liepmann. The advice, criticisms,
encouragement, and assistance of the Drs. H. W. Liepmann, W. W. Willmarth,

and Y. C. Fung, and Mr. G. T. Skinner, and Mrs. Dorothy Diamond are grate-

fully acknowledged. 1In addition, discussions with Dr. G. M. Corcos of
the University of California were much appreciated and proved to be very
useful in interpreting some of the results.

SYMBOLS
c variable
d diameter of cylinder, 1 in.
E Young's modulus of Mylar, 550,000 psi
£ natural frequency of vibration of cylinder, cps
f(xp,zp,t) random force per unit mass exerted by pressure fluctua-
tions on flat plate
F(kl,kg,w) spectrum density of wall pressure in space and time
F(n) spectrum density of pressure fluctuations in time
ky,ky wave numbers in Xp and Ip directions, respectively

K1,Ko wave numbers in x and ¢ directions, respectively
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N

number of circumferential waves in cylinder
length of Mylar cylinder, 11 in.

number of axial half waves in cylinder
frequency, cps

nondimensional axial tension in shell due to internal

N
pressure,

Sl

nondimensional circumfgrential tension in shell due to
N
internal pressure, —g
' Et

stress resultants in shell due to internal pressure,
force per unit length

static pressure difference across cylinder wall

instantaneous value of pressure fluctuations

dynamic pressure, %on2

Reynolds number

radial distance from center of cylinder
time

thickness of cylinder wall

mean velocity at any point in pipe
maximum value of mean velocity

velocity fluctuation in axial direction
normal velocity of skin element

velocity fluctuation in radial direction

velocity fluctuation in tangential direction



mean square acceleration of skin element

impedance of flat plate .
impedance of cylinder

coordinate along flat plate in free-stream direction

longitudinal coordinate along pipe

skin deflection normal to flat plate

skin deflection of cylinder wall in radial direction
coordinate along flat plate normal to free-stream direction
admittance of cylinder wall

attenuation coefficient

nondimensional parameter, Ixd

kinematic viscosity of air
density of air

density of Mylar, 0.05 1b/in.”

Poisson's ratio of Mylar, 0.316
time internal

azimuthal coordinate

nondimensional spectral function
nondimensional function

nondimensional function

autocorrelation function

frequency, radians/sec




APPARATUS AND METHODS

Pipe Facility

The present investigation was carried out using the apparatus shown
in figure 1. The available air supply was filtered by a Norgren air pres-
sure regulator, which is a high-capacity regulator of the balanced-
diaphragm type. The output of the regulator was controlled by means of a
separate high-precision pilot regulator which was operated manually.

After leaving the regulator, the air was passed through a muffler. The
purpose of the muffler was to absorb the noise produced in the supply
system by the valves of the pressure regulator, The sound absorption
process was done at approximately one-tenth of the air speed in the pipe
proper. The contraction at the end of the muffler accelerated the low-
noise air into a l-inch-diameter seamless brass pipe 8 feet long with a
wall thickness of 1/4 inch. Fully developed turbulent flow was established
in the pipe. Between sections of the pipe, a short, very thin-walled sec-
tion was inserted through which pressure disturbances could pass readily
into an enclosure containing a microphone. The enclosure was lined with
Fiberglas and acted as a small-scale anechoic chamber. The gir was then
exhausted through another muffler placed around the exit of the pipe.

The purpose of the second muffler was tc absorb any jet noise.

Muffler System

The muffler originally consisted of a 10-inch-diameter steel casing
T feet long. The 10-inch-diameter section was reduced in two stages to
a l-inch-diameter section by means of concentric swage nipples. The

acoustic lining inside the casing consisted of a 3§-inch—thick Fiberglas

blanket of 3 lb/ft3 density, bonded together by thermosetting plastic
resin. The Fiberglas was held in place by a rolled sheet of punched
aluminum, 0.023 inch thick, with 5/32—inch-diameter holes on l/h-inch
centers. The inner aluminum lining did not appreciably reduce the effec-
tiveness of the Fiberglas blanket. The air passed through the 3-inch-
diameter aluminum tube.

The sound-absorption characteristics of the muffler were checked as
follows. A loudspeaker, driven by an oscillator and amplifier, was con-
nected to one end of the muffler, the other end being sound-insulated.
For a constant loudspeaker input, the sound level inside the muffler was
measured with an Altec-Lansing 21-BR-150 condenser microphone at various
points in the muffler. The results of the test are shown in figure 2.

As expected, the muffler was not very efficient in absorbing sound
under 200 cps; however, as far as the experiment was concerned, the



frequency range from O to 200 cps is of little interest. It can also be
seen from figure 2 that at the higher frequencies, say above 6,000 cps, the
muffler is not quite so efficient as in the range from 200 to 6,000 cps.
This may be due to resonances in the cross section of the 3-inch-diameter
aluminum tube. In order to make sure that the higher frequencies were
sufficiently absorbed, the muffler was modified. Two baffles were added,
as shown in figure 1, and the muffler was lengthened as well. It is a
well-known fact that baffles or bends in an acoustic system are very good
high-frequency sound absorbers. It was calculated that the bends provided
an additional attenuation of at least LO decibels.

Thin-Walled Cylinder

The thin-walled section which transmits the pressure disturbances
was originally made of paper; however, the use of paper was found to be
unsatisfactory because it absorbed the moisture in the air. A new material
known as Mylar was then used. It is a polyester film made by the
E. I. du Pont de Nemours & Co., Inc. The advantages of Mylar are:

(1) The density is low, about one-half that of aluminum.

(2) It is available in small thicknesses, ranging from 0.00025 to
0.0075 inch.

(3) It does not absorb moisture.
(4) It has a low Young's modulus, namely, 550,000 psi.
(5) It has a high tensile strength, approximately 20,000 psi.

(6) Its physical properties are uniform in almost every sheet of
material.

In the present work four different thicknesses were used, that is,
0.0005, 0.001, 0.0015, and 0.0021 inch.

The Mylar cylinders were made and installed as follows. A sheet
of Mylar was rolled onto a l-inch-diameter steel rod, and the edges were
cemented together in a lap Jjoint. The width of the joint was approxi-
mately l/h inch. Two bushings were cemented to the Mylar tube and the
former were locked to the steel rod as shown in figure 3. The whole unit
was then slid into the anechoic chamber,

!
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Anéchoic Chamber

The bushings were held in place by means of lock screws as shown in
figure 4. Finally, the steel rod was withdrawn leaving the Mylar cylinder
perfectly located inside the chamber. The two l-inch-diameter pipe sec-
tions were then coupled to the anechoic chamber. This technique satisfied
both the acoustic and aerodynamic requirements of a smooth continuous
Jjoint between the brass pipe and the Mylar tube.

To make sure that the Mylar tube was not appreciably affected by any
mechanical vibrations O-rings were used throughout the system.

It was decided to use an anechoic chamber rather than a reverberation
chamber because with a reverberation chamber it would have been difficult
to distinguish between the natural frequencies of the chamber and those
of the vibrating cylinder. The present Fiberglas configuration inside
the chamber was chosen to insure that the microphone measured the pressure
field set up by the vibrating wall element directly underneath it. The
sound field was essentially at normal incidence to the microphone, the
sound field in the other directions being absorbed by the Fiberglas lining.

If the acoustic lining had been merely a thin strip along the wall
of the chamber, then the microphone would have discriminated against the
high-frequency sound coming from the ends of the vibrating tube because
the radiation pattern of high-frequency sound from a source is very direc-
tional. There was one more reason for the choice of this particular
Fiberglas configuration. It is well known that the response of the micro-
phone is more or less the same for low-frequency waves irrespective of
their angle of incidence. This is not so at high frequencies. Of course,
the above considerations would not have been important if a short cylinder
had been used in the experiment; however, a short cylinder would have put
a severe constraint on the possible modal configuration. That is, a short
tube would have discriminated against radiation of sound at the longer
wave lengths.

Measurement of Mean Velocity and Pressure

The mean velocity profile at a station a few diameters downstream
of the test section was measured with a small total-head tube. The probe
was made of 0.0L4-inch-diameter nickel tube stock with 0.003-inch wall
thickness. The tip of the probe was flattened to an opening of 0.007 inch.
In the measurements the static pressure was assumed constant across the
pipe. It was measured at the wall and in the same cross-sectional plane
as the mouth of the total-head tube. A typical velocity profile is shown
in figure 5.
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It was noted that the presence of the total-head tube in the pipe
produced sharp peaks in the spectrum of the pressure fluctuations outside
the Mylar tube. Subsequently, the probe was removed and the static pres-
sure at the wall at a station 100 diameters upstream of the test section
was calibrated against the mean velocity at the center of the pipe at the
microphone station.

The static-pressure distribution in the direction of the flow was
measured through pressure taps located on both sides of the test section.
It was found that approximately 30 minutes were needed to measure each
power spectrum of the external pressure field, and 30 minutes were con-
sidered a minimum in order to provide adequate time averaging. It thus
became necessary to check whether the pressure regulator system was cap-
able of maintaining constant velocity in view of the fluctuating campus
supply pressure. It was found experimentally that the pressure regulator
was able to hold the mean velocity at the center of the pipe to within
il/2 percent in a range from 100 to 450 feet per second. In the experi-
ments the mean velocities varied from approximately 120 to 350 feet per
second.

Microphone Equipment

An Altec-Lansing 21-BR-150 condenser microphone was used for all
pressure measurements at points outside the cylinder. The diameter of
the microphone button was approximately 5/8 inch. The microphone was
separated from the anechoic chamber by means of a thick rubber lining
to avoid vibration pickup. The microphone was calibrated up to h0,000 cps

for normal incidence sound waves by the Western Electro-Acoustic Lsaboratory

in Los Angeles (fig. 6). The weakness of the sound field outside the
vibrating cylinder necessitated the use of a condenser microphone system.
However, the measurement of the pressure fluctuations at the wall of a
Mylar cylinder was made with a barium titanate transducer.

The barium titanate transducer used in the present work was designed
by Willmarth (ref. 7). It consisted of two barium titanate disks
cemented into a recess in a brass fitting. The gap around the disks was
sealed by a thin coating of radio cement covering the exposed surface.
The diameter of the barium titanate element was approximately 5/32 inch
and the thickness of each disk was 0.040 inch. The outside diameter of
the brass fitting was approximately 5/16 inch. The outer face of the
element was slightly concave to allow for the curvature of the pipe. The
barium titanate pressure transducer assembly is shown in figure 7.

The transducer was calibrated in a shock tube and the sensitivity

was found to be 0.76 x 10-0 volts/dyne/cm?. Its frequency response was
flat from approximately 5 to 50,000 cps. A detailed description of the
transducer, that is, its design and method of calibration may be found
in reference 7.
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Electronic Equipment

It became necessary to develop & low-noise cathode-follower preampli-
fier for use with the barium titanate transducer. The noise level of the

preamplifier was 5 X 10'6 volts for the band from O to » cps. The fre-
quency response of the preamplifier was found to be flat within *2 percent
over the range 300 to 50,000 cps. The gain of the preamplifier over this
range was 47. The preamplifier circuit is shown in figure 8. 1In addi-
tion, a second amplifier was used which had a flat frequency response
from 10 to 102 cps. Since the band width of the latter amplifier was
considerably wider than that of the preamplifier, the response of the
combination was flat within *2 percent over the range from 300 to

50,000 cps.

The wave analyzer used in the experiment was a Donner Model 21 wave
analyzer having a constant band width from 30 to 50,000 cps. The band-
pass characteristics of this instrument are shown in figure 9.

The measurements taken with the Altec-Lansing 21-BR-150 condenser
microphone did not require use of the preamplifier because in this case
there was no signal-to-noise ratio problem. Also, the Altec microphone
contained its own cathode follower and hence no additional cathode fol-
lower was necessary. However, the amplifier mentioned above was used to
boost the output voltage of the Altec microphone. The only other elec-
tronic equipment employed in the present work were a variable band-pass
filter (Krohn-Hite Model 310—AB), a vacuum-tube voltmeter (Hewlett-Packard
Model 400 C), and an oscilloscope.

GENERAIL CONSIDERATIONS

Response of a Linear System to a Random Force

The response of the elastic skin of the Mylar cylinder to the inter-
nal wall-pressure fluctuations can be studied qualitatively by considering
a simple problem.

It is instructive to study the response of a linear system to a
random forcing function of several variables (refs. 8, and 14 to 18).
As an example, consider the response of a large flat plate excited by a
turbulent boundary layer. This particular problem was analyzed by Corcos
and Liepmann (ref. 8).

Suppose that the motion of the plate is described by a linear differ-
ential equation in Yp« Let f(xp,zp,t) be the random force per unit

mass exerted by the pressure fluctuations in the boundary layer on the
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plate. The forcing function f(xp,zp,t) is characterized by its power
spectral density F(kl,kg,m) which is assumed to be a continuous function

of the wave numbers ki and ko (in the Xp and Zp direction) and of
the frequency w, that is

£(xps2pst) ° =‘/::/1:‘/_: F(ky,kp,w)dk; dk, & (1)

In the present work the configuration under consideration was a
thin-walled cylinder and not a flat plate. The arguments pertaining to
the case of a flat plate hold qualitatively for the case of a thin-walled
cylinder containing turbulent flow; however, the analogy with the flat
plate is less direct because of circumferential restrictions on the
cylinder.

If the length of the cylinder is finite, it is no longer permissible
to ignore the end conditions. Physically it means that axial standing
waves occur in addition to circumferential standing waves. The cylinder
exhibits resonance at a set of discrete frequencies corresponding to the
natural frequencies of vibration.

In the lowest frequency range the natural frequencies are quite
discrete. As the number of axjal and circumferential modes increases,
the difference between consecutive natural frequencies decreases rapidly.
Eventually the natural frequencies are bunched so closely that they
approach the 1limit of continuous resonance. When this happens, the spec-
trum of the mean-square wall deflection is smooth and conditions approach
those of the idealized model discussed above, hence the spectrum of the
pressure fluctuations at a point outside the cylinder is expected to show
several peaks at the lower frequencies followed by an increasingly smooth
spectrum at the higher frequencies.

The investigation was primarily concerned with the measurement and
analysis of the pressure fluctuations at the higher frequencies.

The response of the cylinders at the lower frequencies, that is,
the occurrence and nature of the discrete frequencies of vibration, is
analyzed in the appendix.

Now suppose that the plate is large enough compared with the corre-
lation length of the wall-pressure fluctuations that the average plate
motion is not sensibly affected by the end conditions. Under these con-
ditions one may use a result from generalized Fourier analysis which
states that for a function defined by its power spectrum and mean values,
one may write:

oM+ X
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__2. ) L 00 0 © ikl,ke,u))dkl dk2 dw (2)
Yp- =
OV ~oV ~xw

| %p (k1 k)|

The above equation describes the relation between the power spectrum of
the input F(kl,kg,w), the mean-square deflection yp2 (or output), and
the square of the absolute value of Xp(ky,kp,w).

The wvalue of l/lxp(kl;kg;w)‘e can be calculated. It is the square

of the Fourier transform of the fundamental solution of the linear differ-
ential equation for the skin deflection. Hence, in order to obtain the
response of a linear system to a random forcing function one has to know
the impedance of the system and the power spectrum of the forecing function.

It is obvious that resonance will occur whenever the term
iXp(kl,kg,m>|2 assumes a minimum value. TIn fact, it can be shown

(ref. 8) that, for an infinite plate, resonance occurs continuously over
the whole frequency spectrum. In other words, if the spectrum of the
input is "smooth," then in the idealized case the spectrum of the output
cannot show any sharp peaks.

EXPERIMENTAIL RESULTS

Pressure Fluctuations at Cylinder Wall

The measurement of the pressure fluctuations at the wall of the
cylinder was made as follows. As shown in figure 7, the slightly concave
face of the transducer was pressed against the skin of a Mylar cylinder
having a wall thickness of 0.0005 inch. In other words, the skin was in
direct contact with the barium titanate element at all times. The method
is unorthodox and needs clarification.

The contact of the transducer with the skin obviously affected the
motion of the skin by creating a nodal point at the place of contact.
However, in this particular measurement one is not interested in the motion
of the skin nor in the external pressure field. The quantity of interest
was the spectrum of the internal pressure fluctuations at the wall of the
cylinder. Assuming small skin deflections, the properties of the pressure
fluctuations at the wall were not sensibly affected by the motion of the
skin. The presence of the skin on top of the barium titanate element
obviously gave rise to a certain degree of attenuation. However, the wall
thickness was very thin, namely 00,0005 inch, and the density of the
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material was low. Also, the stiffness of a Mylar sheet is very small

compared with the stiffness of the barium titanate element. Accordingly, ~
the above method, although not ideal, may be expected to yield reasonably
accurate information on the properties of the wall pressure in turbulent

pipe flow. This view is supported by the experimental results. Two

typical power spectra of the pressure fluctuations at the well are plotted

in figure 10.

Pressure Field at Point Outside Cylinder

Originally, it had been intended to measure the sound level in both
the "near field" and the "far field." However, it became evident that
the sound level in the far field was much too weak for measurement with
any type of pressure pickup. In fact, even at a few diameters away from
the center of the pipe, the pressure field, although measureable, was
still weak. It was decided to make all pressure measurements outside the
cylinder at a station B/h inch from the center of the pipe, where the
distance from the wall to the microphone was l/h inch.

~ Ay Lt

The pipe exhausts to atmosphere and the pressure in the anechoic
chamber is also atmospheric. Hence as the velocity is increased, the
pressure difference across the thin-walled cylinder is increased. Con-
sequently the diameter of the elastic cylinder increased a little with
increased internal pressure. The increase in diameter for the thinnest
cylinder, 0.0005-inch wall thickness, was measured to be 0.0l inch., It
was felt that this small decrease in distance between the microphone and
the cylinder wall did not appreciably affect the magnitude of the observed
pressure fluctuations at the microphone station. -

Two sets of power spectra of the external pressure for cylinders of
wall thickness 0.0005 inch and 0.001 inch are shown in figure 11.

The logarithm of the root-mean-square pressure at the wall is plotted
against the logarithm of the velocity at the center of the pipe in fig-
ure 12, and the logarithm of the root-mean-square pressure at the station
r/d = 5/h is plotted against the logarithm of the velocity at the center
of the pipe in figure 13. The experimental results show that the mean-
square pressure is proportional approximately to the fifth power of the
velocity.

Next, a curve of best fit was drawn through the smooth high-frequency
part of each power spectrum. It was found that, for each cylinder, the

curves scaled if the parameter was plotted as a function of <Hd>.

02U i (o] S
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As stated before, the diameter of the cylinder was not varied with experi-

ments. The velocity in most tests was changed by a ratio of approximately -

2 to 1.
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The results of this phase of the work are shown in figure 14 for
cylinders of wall thickness 0.0005, 0.001, 0.0015, and 0.0021 inch,
respectively.

DISCUSSION

Pressure Fluctuations at Wall

The existence of fully developed turbulent flow in & pipe implies
that the velocity profile has approached a universal form. The dominant
variables that describe the mean turbulent flow are p, Uy, and d.

The pipe flow experiments of Laufer (ref. 13) established that the
turbulent velocity fluctuations u', v', w' are proportional to Uy

and that the correlation function does not depend on Ug,.

The pressure fluctuation p' 1is proportional to pu'u' and hence
one pressure can be formed proportional to pUy= and one length, propor-
tional to d.

In the present work the magnitude of the mean velocity was suffi-
ciently low to warrant the assumption of incompressible flow. Accordingly
one would expect the mean-square wall pressure to be proportional to U L,

This was checked experimentally, and the result is shown in figure 12,
It was found that the ratio of the root-mean-square pressure to the
dynasmic pressure was a constant (0.0078). (Willmarth (ref. 5) found
that the ratio of root-mean-square wall pressure to dynamic pressure was
a constant (0.006) for a turbulent boundary layer.)

An examination of the power spectra (fig. 10) indicates the existence
of one or two sharp peaks in each spectrum. It is felt that the peaks
are not associated with the internal flow. Also, since the transducer
response is flat between 5 to 50,000 cps they cannot be traced to the
transducer either. The transducer touched the cylinder and it is thought
that the finite size of the transducer put a constraint on the motion of
the skin causing a disturbance which was fed to the barium titanate ele-
ment in the form of a sharp peak.

Similarity Parameters

The selection of nondimensional parameters for the case of pressure
fluctuations at the wall was arrived at as follows.
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The mean-square pressure at the wall can be written in its power
spectral form

P2 =f°° F,(n)dn (3)
0

If the skin deflection is small the wall pressure is a function of the
internal flow variables only and not of the elastic properties and con-
straints of the cylinder. From the preceding discussion it is seen that
the mean-square wall pressure is proportional to p2UO“ and that the

problem has one characteristic length proportional to d.

In order to describe the spectral properties of the pressure fluc-
tuations it is necessary to make a statement about the frequency. It is
assumed that a characteristic frequency ng for the pressure fluctua-

tions is proportional to Uo/d, that is, the characteristic frequency

U
g = =2 ()

Hence equation (5) may be written as

Fof e TR o

so that
¢ <29> _ (Rl (U_°> (6)
1\U, p2Uol+ d
The universal function ¢l<32> is determined from the experiments. The
o]

smooth part of each power spectrum, say above 1,000 cps as shown in fig-
ure 10, was plotted in nondimensional form in figure 1%. The plot in
figure 15 shows that the spectra scaled with velocity as prescribed by
equation (6). The scaling of the spectra with diameter was not
investigated.

The scaling laws for the pressure fluctuations outside the Mylar
cylinder were derived in a similar fashion; however, now one has to
include the effect of the cylinder wall.

[oJAVI IS
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For a given cylinder, that is, given elastic properties and con-
straints, the mean-square pressure at a given distance away from the
pipe is written as

2 - [ Fn)an )
p ]o n (7

The spectral density function F(n) can be expressed as a product of
I(n), a term proportional to the admittance of the cylinder, and Fj(n),

the spectral density of the pressure fluctuations at the wall,
F(n) = I'(n)F;(n) (8)

For the case of the external pressure field, it is useful to deal with
two characteristic frequencies. One frequency is the characteristic

U
frequency of the flow ng = ?f which has already been discussed. The

other is the characteristic frequency of the material mnj, where

(9)

ny =

The variable c¢ 1is assumed to be a characteristic velocity which depends
on the elastic properties of the material.

Hence equation (7) can be written as

P2 =fow F(n)dn = pZ‘Uo)“fooo \V(%, %)d(%) (10)

so that

o b n
F(n) = ano W(i, —O) (11)

o) No™ Dy

The form of Fi(n) in equation (8) is given by equation (6). If one
assumes that the function F(n) in equation (8) is of form
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then one can write equation (11) as

N
DEUO

F(n) = §§.¢5(§§) (12)

The object of this simple analysis was to find scaling laws for the
spectra of the pressure fluctuations if the flow velocity was varied in
a cylinder of fixed size and material. Since the cylinder configuration
was fixed, only one typical length was needed for dimensional purposes.
The diameter of the pipe was chosen as the characteristic length because
it is associated with the flow characteristics.

Oy

Equation (12) suggests that the spectra of the pressure fluctuations
outside the cylinder scale with flow velocity if the spectral function

EéElE is plotted against the nondimensional parameter 59.

02U, Yo

Substitution of equation (12) into equation (7) gives the relation
02U 2

# ), M) @

Hence, for a given cylinder, the mean-square pressure at a given distance
from the cylinder varies as the fifth power of the velocity.

External Pressure Field

It is interesting to compare the power spectra of the internal pres-
sure fluctuations at the wall with those measured outside the cylinder.
The spectra of the pressure fluctuations measured outside the cylinder
pass through the origin, show several sharp peaks, and extend over a wide
frequency range. In contrast, the power spectra of the pressure measured
at the wall do not pass through the origin and do not extend over as wide
a frequency range. Also, most of their energy is contained at the lower
frequencies. The reason for the power spectrum passing through the
origin and extending over a wide frequency range in one case and not in
the other may be explained qualitatively as follows.

Equation (2) suggests that the mean-square skin deflection y2 of
the cylinder is of the following form:

JOOF Kl,Ke, )aK) dKp do

(ke p,0)|

(ool \ VN it
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where F(Kl,Kg,w) is the power spectrum of the wall pressure and

X(Kl,Ke,w) is the impedance of the cylinder. Now, the mean-square pres-

sure pe outside the cylinder is proportional to the mean-square normal
acceleration of a typical vibrating cylinder wall element. Therefore,
one may write

7 2
'5vn>‘ [Py _j]]“qu(Kl,Ke,w)dKl aKp do (14)
(at 562 e

| %(k2,Kz00)

L

The effect of the w term in the numerator is to force the power spec-
trum to pass through the origin, and in addition it raises the very high-
frequency part of the spectrum.

The dependence of 55 on the velocity is shown in figure 15.
The experimental results show that p2 is proportional to UO5,
approximately. The author tested eight cylinders of different wall
thickness ranging from 0.0005 toc 0.0021 inch. In these tests the
exponent of the velocity varied from a value of L.8 to a value of 5.15.

In six out of eight cases the range of the exponent varied from 4.9 to
5.10.

The repeatability of the total root-mean-square pressure measure-
ments was surprisingly good considering that the cylinders could not be
made exactly the same even though their wall thicknesses were identical.
The results were repeatable within *5 percent. A typical result is shown
in figure 13(d).

A curve of best fit was drawn through the smocth high-frequency part
of each power spectrum. Typical examples are shown in figure 11, It was
found that this particular section of each power spectrum scaled with

velocity if the power spectral function F(n)/ngou was plotted against

the nondimensional parameter nd/U, for each cylinder. The results are
shown in figure 1k.

The repeatability of power spectra measurements was reasonably good.

- For instance, all power spectra could be reproduced within *7 percent.

A typical case is shown in figure lh(e). The repeatability of the power
spectra measurements was not as good as that of the measurements of p
versus velocity because the latter measurements could be taken in a rela-
tively short time whereas a period of approximately 30 minutes was needed
for each spectrum. During this time the mean velocity in the pipe varied
by 1 percent. Also, the use of the wave analyzer introduced additional
errors,
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In all tests, the lower limit of velocity was usually dictated by
intensity requirements. The upper limit was set by "bursting" strength
limitations of each thin-walled cylinder.

A curve of best fit was drawn through each of the sets of power
spectra shown in figures 14(a), 14(b), 14(c), and 14(d).

An attempt was made to find a scaling parameter which would include
the effect of wall thickness. One would expect that at the higher fre-
quencies the transmission of the pressure fluctuations is primarily

governed by the mass of the tube wall, p2 o« %'2. Consequently, if the

spectral function F(n)p'EUO"LL is multiplied by %2, one would expect
reasonably good scaling. This plot is shown in figure 16(a).

However, it is not obvious that the phenomena are quite that simple.
The response of an oscillating system is either stiffness-, resistance-
(damping), or mass-controlled depending on whether the driving frequency
is less than, equal to, or greater than the natural frequency (ref. 19).
This is the reason that, at the higher frequencies, one would first try
a scaling parameter based on the mass law.

However, in the present case, the smooth part of the spectrum at the
higher frequencies may be interpreted as a "continuous" resonance (ref. 8).
If this is correct, damping may play an important role. Hence it is not
completely certain whether the mass law dominated the phenomena.

An analysis was made for the case of an infinite flat membrane where
the effect of air damping was included. The damping constant was assumed
to be inversely proportional to the wall thickness. The analysis was
similar to the one carried out by Corcos and Liepmann (ref. 8) for the

2U0-u~

infinite flat plate. The calculations suggested a plot of F(n)p~ t

~1~1/2
versus ndU, 13 / . The plot is shown in figure 16(b). The analysis

involved many assumptions. Also the actual configuration is cylindrical
rather than planar. In addition, it is not certain that the tubes behaved
as membranes.

For instance, for the tube of wall thickness 0.0005 inch, table I
shows that various and appreciable amounts of energy went into stretching
of the shell and, therefore, the tension may no longer have been constant.

Although the model was not a good one, the fact remains that the
spectra for the various wall thicknesses could be made to fall together
by using two different sets of scaling parameters (rig. 16).

o+ x
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Hence the only conclusion one may draw is that, in the present
experiment, the effect of wall thickness on the transmission of the pres-
sure fluctuations is not well understood.

An inspection of the power spectra (fig. 11) shows the existence
of a "hump" in the spectrum around 8,000 to 9,000 cps. Upon investiga-
tion it was found that the hump increased in amplitude with increased
wall thickness. It did not shift in frequency with increased speed.
Also, as the Fiberglas lined cavity in which the microphone was located
was increased in size, the hump tended to disappear. Accordingly it was
thought that the phenomena were associated with some kind of damped
resonance inside the acoustic cavity. Consequently, the presence of the
hump was ignored.

It is realized that the anechoic properties of the Fiberglas lined
chamber are not perfect. However, it should be borne in mind that the
pressure fluctuations occur at high frequencies and the absorption char-
acteristics of Fiberglas at high frequencies are reasonably good. The
radiated sound field is essentially very weak and it is felt that although
some reverberation may have occurred at the lower frequencies the overall
reverberation effects were small,

The weakness of the external sound field may be explained as follows.
It is thought that the running ripples in the cylinder wall were heavily
damped. Three forms of damping may have occurred. However, it is thought
that the effects of both structural and aerodynamic damping were small
compared with the damping which occurred because the correlation function
of the forces was related over a distance.

The latter can cause considerable cancellation of forces acting on
the cylinder wall, thus resulting in weak external sound fields.

CONCLUSIONS

An investigation of the vibration and near-field sound of thin-
walled cylinders caused by internal fully developed turbulent pipe flow
was made. In the experiments the cylinder wall deflection was kept small
compared with the diameter. The experimental results led to the following
conclusions.

1. The spectra of the pressure fluctuations at the wall of the pipe
can be represented by the relation

o) - ()

U ngou \d

o}
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where @,(nd/U;) is the universal function, F;(n) is the spectrum

density of pressure fluctuations in time, ¢ is the density of air,
Uo 1is the maximum value of mean velocity, and d is the diameter of
the cylinder.

2. The mean-square pressure at the wall varies as the fourth power
of the mean velocity at the center of the pipe.

3, The ratio of the root-mean-square pressure at the wall to the
free-stream dynamic pressure is a constant (0.0078).

4. The mean-square sound pressure in the near field outside the
cylinder varies as approximately the fifth power of the mean velocity at
the center of the pipe.

5. The spectra of the pressure fluctuations in the external near-
field scale with velocity.

6. The effect of increased wall thickness on the spectrum is to make
the higher frequency part of the spectrum flatter. No definite similarity
parameter, which would include the effect of wall thickness, was found.

7. The measurements indicate that present cylinder vibration theory
is capable of predicting, quite accurately, the occurrence of natural
frequencies in thin-walled cylinders under internal pressure when the
cylinders are excited by turbulent flow.

California Institute of Technology,
Pasadena, Calif., August 18, 1959.
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APPENDIX

NATURAL FREQUENCIES OF VIBRATION OF THIN-WALLED CYLINDERS

UNDER INTERNAL PRESSURE

It is always difficult to determine precisely the date and author
of a discovery. This seems to be the case with the work done on the
vibrations of thin cylindrical shells. The subject is briefly touched
upon in textbooks by Morse (ref. 19), Timoshenko (ref. 20), and others.

The first serious experimental work was carried out by Arnold and
Warburton (refs. 21 and 22). However, in these experiments, the effects
of internal pressure on the natural frequencies of vibration were not
thoroughly investigated. Reissner (ref. 23), Mirsky and Herrmann
(ref. 24), Fung, Sechler, and Kaplan (ref. 25), and several others also
worked on the general problem of vibrating cylindrical shells,

Reference 25 is the first serious work, both theoretical and experi-
mental, on the effects of internal pressure on the natural frequencies
of vibration. In the experiments conducted by Fung, Sechler, and Keplan,
the cylinders were excited by a sinusoidal sound wave. In the present
work the cylinders were excited by means of turbulent pipe flow. In this
case the pressure fluctuations at the wall were produced by velocity fluc-
tuations throughout the pipe flow. The cylinders were excited by forces
describable by a correlation function having a particular shape. It is
probable that, as in Willmarth's case, the wall pressures are convected
and lose their identity after being carried downstream over a certain
distance. However, since no space-time correlation measurements of the
wall pressure were made it is not certain whether this is true.

Measurements of the frequency spectra of the wall pressure have been
made as shown in figure 10. From these measurements it is possible to
calculate the autocorrelation function

v(T) =k/;m F(n)ecos(2xnT)dn

The theory of vibration of thin ecylindrical shells under internal
pressure is rather complicated; however, it is useful to consider the
frequency equation which is an eigen value equation. This equation deter-
mines the various natural frequencies of vibration from the elastic prop-
erties and constraints of the cylinder.

For a simply supported thin-walled cylinder, the simplified frequency
equation states that
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2.2 o2 L
n=d”p f Ae 1 2TV (,2 N .. 2. = >
= + 15(1 - 02)<§;> (l + Ao ) + nx%c + nwl e e

(A1)

The first term on the right-hand side of the equation describes the
influence of stretching of the shell, and the second term, the influence
of bending. The last two terms describe the influence of axial stress
and hoop stress due to internal pressure, respectively. For a.particular
cylinder, equation (A1) states that the natural frequency f 1is given by
the following relation

f = f(m,l,pd>

Consequently, if for a fixed mode shape (m,l) one measures two values of
the natural frequency f at two values of the pressure difference across
the wall Pg» then one can solve for m and 1.

In the present experimental investigation, the above-mentioned method
was used to determine the natural frequencies of vibration of the various
cylinders.

Measurement of Natural Frequencies of Vibration

Considerable time was spent making the airflow acoustically clean.
Therefore, when it became evident that very sharp peaks occurred at the
lower frequencies of the power spectra, as shown in figure 11, it was
suspected that these peaks were associated with the natural frequencies
of vibration of the cylinder. It was also observed that the peaks shifted
with the pressure difference across the cylinder wall.

Accordingly, it was declded to measure carefully the frequency of
each peak in the spectrum. Because the dial readings at low frequencies
were none too accurate on this model wave analyzer, the following experi-
mental procedure was adopted. Each peak in the spectrum was carefully
tuned to show maximum deflection on the wave analyzer meter. A signal
from an oscillator was then fed into the wave analyzer. The frequency of

the oscillator was adjusted to give maximum deflection on the wave analyzer

meter. Finally, the oscillator frequency was read. The method is essen-

tially a step-by-step frequency calibration of the wave analyzer for each
peak in the spectrum. It is a cumbersome but accurate method.

The various resonant frequencies of each cylinder are plotted against
the pressure difference across the wall at a station directly underneath
the microphone. The results are shown in figure 17 for cylinders of wall
thicknesses 0.0005, 0.001, 0.0015, and 0.0021 inch,

oIV Il
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Discussion

The power spectra of the pressure fluctuations measured outside the
cylinder always exhibited at least three and sometimes as many as six
peaks. The fifth and sixth resonance peaks, if they occurred, were
usually weak and considerably damped which made an accurate measurement
of them somewhat difficult. Accordingly, figure 17 shows only the depend-
ence of the first three or four natural frequencies on the pressure differ-
ence across the wall. The accuracy of the measurement of the natural
frequencies was considered good and well within *2 percent.

The calculation of the corresponding theoretical natural frequencies
was made with the aid of frequency equation (Al), which involves two
assumptions, both needing clarification.

The first assumption is that the cylinder is "freely supported" in
such a manner that the ends remain circular and that no restraint on the
axial or tangential displacement is imposed at the ends. The latter is
not satisfied in the experimental setup. The effect of axial and tan-
gential constraint at the ends will be to raise the value of the natural
frequencies by a few percent, particularly at the lower mode m = 1.

In addition it is assumed in the theory (ref. 25) that the pressure
difference across the wall is uniform along the cylinder. Since in the
experiment the cylinder contains turbulent pipe flow, a pressure gradient
exists along the pipe. The pressure difference across the wall of the
cylinder at the ends is within *10 percent of the pressure difference
across the wall at the microphone station. It is not known to what extent
the pressure gradient affects the natural frequencies of vibration.

The term ﬁxxcz in equation (A1) is associated with the axial tension
due to internal pressure, but this contribution is small in the experiment.
However, the influence of skin friction must be considered. Accordingly,
an estimate was made of the tension in the wall due to skin friction.

Its effect was found to be small. The value of the various terms in
equation (Al) is shown in table I for a cylinder of wall thickness
0.0005 inch. Four modes of vibration were considered.

From the calculations it is apparent that most of the energy is
associated with the hoop stress and stretching of the shell. Very little
energy is absorbed by the axial tension and wall bending. It is also
interesting to note that the 1 = 0 mode, if it is excited, occurs at
a very high frequency, well above 15,000 cps. This is because it requires
a considerable amount of energy to excite the cylinder in such a mode,
all the energy being absorbed by the stretching of the shell.
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It is important to note that the mode shapes were not independently
measured. Consequently, the comparisons between experiment and theory
as shown in figure 17 are for probable comparable modes. However, the
comparisons were thought to be fairly good since a slightly different
choice of mode parameters (m,l) would have resulted in theoretical curves
substantially different from the experimental ones. Furthermore, the
microphone was located at the center of each cylinder. It would there-
fore favor detection of mode shapes having an odd value of m, and, as
shown in figure 17, most of the mode shapes have an odd value of m.

It is possible that additional vibration modes may have been present;
however, they were not detected by the microphone.

Finally it should be noted that the magnitude of the response at the
lowest eigen frequency is not necessarily the largest; that is, a larger
response may occur at an eigen frequency which is several times the low-
est one.
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Figure 12.- Variation of root-mean-square pressure at wall with velocity.
Cylinder thickness, 0.0005 in.; diameter, 1 in.; station r/d = 1/2.
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Figure 13.- Variation of root-mean-square pressure at station r/d = 5/2+
with velocity at center of pipe for cylinder 1 inch in diameter.
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Figure 13.- Continued.

QZT=M



W-128

1.5

o]
1.0 /7
9 /
8 /o
7 //
6
/=
prms’ ) 5
dyne/cm?
l‘. P/
3
.2
o
1515 200 300 400
Veloecity at center of pipe, ft/sec
(c) Wall thickness, 0.0015 inch. Experimental result: pe « UO5'lO.

Figure 13.- Continued.



46

1.0

L Cylinder No. 1
o Cylinder No. 2

Prmss
dyne /cm®

.1
100 200 300 400

Velocity at center of pipe, ft/sec

(4) Wall thickness, 0.0021 inch. Experimental result: p2 e« Ug?-10:

Figure 13.- Concluded.
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Figure 14.- Similarity of power spectra of p(t) for cylinder 1 inch in
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Figure 14.- Continued.
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Figure 15.- Scaling of power spectra of p(t) with velocity. Cylinder
thickness, 0.0005 inch; diameter, 1 inch; station r/d = 1/2.
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